On Dual-Finite Volume Methods for Extended Porous Medium Equations

نویسنده

  • Hidekazu Yoshioka
چکیده

This article shows that the unconditional stability of the Dual-Finite Volume Method, which is at least valid for linear problems, is not true for generic nonlinear differential equations including the PMEs unless the coefficient appearing in the numerical fluxes are appropriately evaluated. This article provides a theoretically truly isotone numerical fluxes specialized for solving the PMEs presented, which is still as simple as the conventional fully-upwind counterpart.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical modelling of double-diffusive natural convection within an arc shaped enclosure filled with a porous medium

Numerical study of double-diffusive natural convective heat transfer in a curved cavity filledwith a porous medium has been carried out in the current study. Polar system has beenselected as coordinate system. As a result, all equations have been discredited in r and θdirections. Brinkmann extended Darcy model has been utilized to express fluid flow inporous matrix in the enclosure. Smaller and...

متن کامل

Numerical simulation of a three-layered radiant porous heat exchanger including lattice Boltzmann simulation of fluid flow

This paper deals with the hydrodynamic and thermal analysis of a new type of porous heat exchanger (PHE). This system operates based on energy conversion between gas enthalpy and thermal radiation. The proposed PHE has one high temperature (HT) and two heat recovery (HR1 and HR2) sections. In HT section, the enthalpy of flowing high temperature gas flow that is converted to thermal radiation em...

متن کامل

Numerical Study of Natural Convection in a Square Cavity Filled with a Porous Medium Saturated with Nanofluid

Steady state natural convection of Al2O3-water nanofluid inside a square cavity filled with a porous medium is investigated numerically. The temperatures of the two side walls of the cavity are maintained at TH and TC, where TC has been considered as the reference condition. The top and the bottom horizontal walls have been considered to be insulated i.e., non-conducting and impermeable to mass...

متن کامل

An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flow

In this paper we derive an a posteriori error estimate for the numerical approximation of the solution of a system modeling the flow of two incompressible and immiscible fluids in a porous medium. We take into account the capillary pressure, which leads to a coupled system of two equations: parabolic and elliptic. The parabolic equation may become degenerate, i.e., the nonlinear diffusion coeff...

متن کامل

Error estimates for the finite volume discretization for the porous medium equation

In this paper we analyze the convergence of a numerical scheme for a class of degenerate parabolic problems. Such problems are often used to model reactions in porous media, and involve a nonlinear, possibly vanishing diffusion. The scheme considered here involves the Kirchhoff transformation coupled with the regularization of the nonlinearity, and is based on the Euler implicit time stepping a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1507.05281  شماره 

صفحات  -

تاریخ انتشار 2015